Archivio dei tag ing Casparriello Marco

Dimarco casparriello

Disequazione di Bernoulli

Dimostrazione Disequazione di Bernoulli

La disequazione di Bernoulli sarà utilizzata successivamente nella dimostrazione dell’esistenza del limite di Nepero ed è un esempio di proprietà che può essere dimostrata con il principio di induzione.

Enunciato: \(\forall x>-1,\,\forall n\in \mathbb{N}\)  si ha che \({{\left( 1+x \right)}^{n}}\ge 1+nx\)

E andiamo a vedere la dimostrazione disequazione di Bernoulli per induzione:

Dimostrazione per induzione

Dimostriamo che la proprietà è vera per \({{n}_{0}}=0\). Allora si ha che   \({{\left( 1+x \right)}^{0}}\ge 1+0\cdot x\,\,\,\Rightarrow \,\,\,\,1\ge 1\)ed è vero!

Poi passiamo a dimostrare il passo induttivo. Supponiamo vero\({{P}_{n}}:\,\,\,{{\left( 1+x \right)}^{n}}\ge 1+nx\) , vediamo se facendo operazioni matematiche regolari si arriva a \({{P}_{n+1}}\) , e se ci riusciamo allora abbiamo dimostrato che la proprietà è vera.

Moltiplichiamo per \(\left( 1+x \right)\) entrambi i membri della disequazione e si ottiene \(\left( 1+x \right){{\left( 1+x \right)}^{n}}\ge \left( 1+x \right)\left( 1+nx \right)\). Osserviamo che il verso della disequazione non cambia essendo \(1+x>0\) vista l’ipotesi che \(x>-1\).

Riscritta meglio diventa \({{\left( 1+x \right)}^{n+1}}\ge 1+x+nx+n{{x}^{2}}\).

A questo punto possiamo osservare che \(n{{x}^{2}}\ge 0\) essendo il prodotto tra numeri positivi.

Allora \(1+x+nx+n{{x}^{2}}\ge 1+x+nx\) e quindi si ottiene \({{\left( 1+x \right)}^{n+1}}\ge 1+\left( 1+n \right)x\) raccogliendo una \(x\), e quest’ultima espressione corrisponde proprio a \({{P}_{n+1}}\) e quindi abbiamo dimostrato il passo induttivo.

Vedi altre lezioni di matematica

Dimarco casparriello

Dimostrazione dell’equivalenza tra diverse definizioni di punto di accumulazione

DIMOSTRAZIONE DELL’EQUIVALENZA TRA DIVERSE DEFINIZIONI DI PUNTO DI ACCUMULAZIONE

Nell’esame di analisi matematica 1 spesso viene chiesto  di dimostrare l’equivalenza tra diverse definizioni di punti di accumulazione, nel video seguente si riporta la dimostrazione.

Scarica il pdf della lezione

Punti di accumulazione

Definizione 1

Dato un insieme reale \(A\subseteq \mathbb{R}\),\(accA\) è l’insieme dei punti di accumulazione di \(A\), cioè l’insieme dei punti che rispettano la definizione \(x\in accA\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\left( x-\delta ,x+\delta  \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) .

Definizione 2

Esiste poi una seconda definizione equivalente a quella appena data, che afferma che\(x\in accA\), se ogni suo intorno contiene infiniti elementi di \(A\). In formule si può scrivere \(x\in acc(A)\) \(\Leftrightarrow \) \(\forall \delta >0\,\,\)(anche piccolissimo)\(B=\left( x-\delta ,x+\delta  \right)\cap A\backslash \left\{ x \right\}\ne \varnothing \) è un insieme infinito, cioè contiene infiniti elementi.

Dimostrazione

Dimostriamo ora l’equivalenza tra le due definizioni:
Facciamo una dimostrazione per assurdo negando il fatto che l’insieme \(B\) è infinito. Se B fosse finito, allora si avrebbe che fissato un certo \(\delta \), esso conterrebbe un numero finito di elementi e quindi potrebbe essere rappresentato come un insieme per elenco \(A=\left\{ {{x}_{1}},..,{{x}_{N}} \right\}\)  costituito da \(N\) elementi. A questo punto, se scegliessi \(\delta ‘=\min \left| {{x}_{k}}-x \right|\) si avrebbe che \(\left( x-{\delta }’,x+{\delta }’ \right)\cap A\backslash \left\{ x \right\}=\varnothing \) e quindi si arriverebbe a negare anche la prima definizione.

Dimarco casparriello

Teorema di unicità dell’estremo superiore (dimostrazione)

TEOREMA DI UNICITÀ DELL’ESTREMO SUPERIORE (DIMOSTRAZIONE)

Dimostrazione per assurdo del teorema di unicità dell’estremo superiore di un insieme reale. Il teorema afferma che:

Se un insieme ammette estremi reali, allora essi sono unici, e quindi un insieme non può ammettere due o più estremi superiori o inferiori.

Scarica il pdf della lezione

Dimostrazione.

Questo teorema si dimostra per assurdo. Vedremo la dimostrazione nel caso dell’estremo superiore, ma vale allo stesso modo anche per quello inferiore.
Partiamo quindi con la negazione della tesi e quindi assumiamo che l’insieme ammette due valori diversi per l’estremo superiore diversi tra loro e cioè \({{L}_{1}}=\sup A\) , \({{L}_{2}}=\sup A\) e \({{L}_{2}}>{{L}_{1}}\) .
A questo punto riscriviamo la definizione di estremo superiore due volte:

\({{L}_{1}}=\sup A\)\(\Leftrightarrow \) \(\forall \varepsilon >0\,\exists {{x}_{1}}\in A\,|\,\,\,\,{{x}_{1}}>{{L}_{1}}-\varepsilon \)
\({{L}_{2}}=\sup A\)\(\Leftrightarrow \) \(\forall \varepsilon >0\,\exists {{x}_{2}}\in A\,|\,\,\,\,{{x}_{2}}>{{L}_{2}}-\varepsilon \)

Inoltre poiché \({{L}_{1}}\) e \({{L}_{2}}\)sono maggioranti posso anche scrivere che \({{L}_{2}}\ge {{x}_{1}}\) e  \({{L}_{1}}\ge {{x}_{2}}\)

Mettendo insieme tutte queste condizioni posso scrivere il sistema

\(\left\{ \begin{align}
& {{L}_{2}}\ge {{x}_{1}}>{{L}_{1}}-\varepsilon  \\
& {{L}_{1}}\ge {{x}_{2}}>{{L}_{2}}-\varepsilon  \\
\end{align} \right.\) \(\Rightarrow \) \(\left\{ \begin{align}
& {{L}_{2}}>{{L}_{1}}-\varepsilon  \\
& {{L}_{1}}>{{L}_{2}}-\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)\(\left\{ \begin{align}
& {{L}_{2}}-{{L}_{1}}>-\varepsilon  \\
& {{L}_{1}}-{{L}_{2}}>-\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)\(\left\{ \begin{align}
& {{L}_{2}}-{{L}_{1}}>-\varepsilon  \\
& {{L}_{2}}-{{L}_{1}}<\varepsilon  \\
\end{align} \right.\)\(\Rightarrow \)

\(-\varepsilon <{{L}_{2}}-{{L}_{1}}<\varepsilon \)
Poiché questa disequazione deve essere verificata \(\forall \varepsilon >0\) , l’unica scelta che rende vera la disequazione è \({{L}_{1}}={{L}_{2}}\) , arrivando alla contraddizione che nega l’assunzione iniziale e quindi il teorema risulta dimostrato.

 
Dimarco casparriello

Esercizi su insiemi reali (topologia dell’asse dei reali)

ESERCIZI SU INSIEMI REALI 

In questo video svolgo due esercizi relativi agli insiemi reali. In particolare dati due esempi di insiemi, mostro come trovare i relativi insiemi dei punti di accumulazione, punti isolati, punti di frontiera, estremi superiori ed inferiori, limitatezza inferiore e superiore, massimo e minimo (se esistono) e dire se gli insiemi sono aperti o chiusi.

Segui il video fino e fondo, metti mi piace al video e iscriviti al canale.

scarica il pdf della lezione

alcune regole che É bene ricordare
  • i punti di accumulazione sono tutti quei punti in cui l’insieme diventa denso, cioè se costruisco un intorno del punto, comunque piccolo lo prendo, vedo sempre un insieme di infiniti punti.
  • un insieme non sempre ammette massimo e minimo, ma quando essi esistono coincidono con gli estremi superiore ed inferiore rispettivamente.
  • il massimo di un insieme esiste quando tra tutti gli elementi dell’insieme è possibile individuare un elemento più grande di tutti.
  • i punti isolati non sono punti di accumulazione, perchè esiste un intervallo finito che li separa dagli altri elementi dell’insieme.
  • i punti interni si trovano soltanto all’inerno degli intervalli.

dato un insieme reale:

Dimarco casparriello

Insiemi di numeri

INSIEMI DI NUMERI

Prima di entrare nel vivo della materia è bene fare una presentazione degli insiemi di numeri su cui si opera e a partire dai quali si costruisce tutta l’analisi matematica. Ecco l’elenco dei principali insiemi numerici:

\(\mathbb{N}=\{0,1,2,3,…\}\) denota l’insieme dei numeri naturali.
\(\mathbb{Z}=\{..,-3,-2,-1,0,1,2,3,..\}\)è l’insieme dei numeri relativi
\(\mathbb{Q}=\{\pm \frac{m}{n},\,\,con\,\,m\in \mathbb{N},n\in \mathbb{N}\}\)è l’insieme dei numeri razionali
\(\mathbb{R}\) è l’insieme dei numeri reali. Due sottoinsiemi di esso sono: \({{\mathbb{R}}^{+}}\)insieme dei numeri reali positivi escluso lo zero e \(\mathbb{R}_{0}^{+}\) che include lo zero.

Ripetizioni di Analisi Matematica con Skype o Hangouts

Ripetizioni di Analisi Matematica svolte da un docente che saprà sciogliere ogni tuo dubbio e aiutarti anche nelle situazioni più complesse!

\(\mathbb{C}=\left\{ z=x+i\,y;\,\,\,\,x,y\in \mathbb{R} \right\}\,\,\)è l’insieme dei numeri complessi. Questo insieme è un estensione dei numeri reali e si costruisce a partire da essi introducendo l’unità immaginaria \(i=\sqrt{-1}\) e che vedremo nel dettaglio più avanti.

Si osserva che tra gli insiemi numerici vale la seguente relazione: \(\mathbb{N}\subset \mathbb{Z}\subset \mathbb{Q}\subset \mathbb{R}\subset \mathbb{C}\).

I numeri naturali sono tutti i relativi con il segno positivo. I numeri relativi possono essere visti come numeri razionali ponendo \(n=1\) al denominatore oppure come frazioni dove il numeratore è multiplo del denominatore. Una riflessione va fatta per quanto riguarda la relazione tra numeri razionali e reali.
Qualsiasi numero con un numero finito di cifre dopo la virgola può essere scritto come frazione, ovvero come numero razionale. Poniamoci a questo punto una domanda: tutti i numeri possono essere scritti come numeri razionali?
Per rispondere a questa domanda basta trovare un controesempio, cioè un numero che non può essere scritto come frazione. L’esempio in questione è il numero \(\sqrt{2}\), e a questo punto andiamo a dimostrarlo per assurdo.
Come prima cosa bisogna negare la tesi, quindi per assurdo assumiamo che \(\sqrt{2}\)può essere scritto come il rapporto tra due numeri primi tra loro (se non lo fossero basterebbe semplificare).


Autore: ing. Casparriello Marco

Lezioni di matematica e fisica a cura di Marco Casparriello.